Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, n__app(activate(XS), YS))
from(X) → cons(X, n__from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, n__nil)), n__zWadr(activate(XS), activate(YS)))
prefix(L) → cons(nil, n__zWadr(L, prefix(L)))
app(X1, X2) → n__app(X1, X2)
from(X) → n__from(X)
niln__nil
zWadr(X1, X2) → n__zWadr(X1, X2)
activate(n__app(X1, X2)) → app(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__zWadr(X1, X2)) → zWadr(X1, X2)
activate(X) → X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, n__app(activate(XS), YS))
from(X) → cons(X, n__from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, n__nil)), n__zWadr(activate(XS), activate(YS)))
prefix(L) → cons(nil, n__zWadr(L, prefix(L)))
app(X1, X2) → n__app(X1, X2)
from(X) → n__from(X)
niln__nil
zWadr(X1, X2) → n__zWadr(X1, X2)
activate(n__app(X1, X2)) → app(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__zWadr(X1, X2)) → zWadr(X1, X2)
activate(X) → X

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__zWadr(X1, X2)) → ZWADR(X1, X2)
PREFIX(L) → NIL
APP(cons(X, XS), YS) → ACTIVATE(XS)
ACTIVATE(n__app(X1, X2)) → APP(X1, X2)
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ACTIVATE(n__nil) → NIL
ACTIVATE(n__from(X)) → FROM(X)
PREFIX(L) → PREFIX(L)
ZWADR(cons(X, XS), cons(Y, YS)) → APP(Y, cons(X, n__nil))
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)

The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, n__app(activate(XS), YS))
from(X) → cons(X, n__from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, n__nil)), n__zWadr(activate(XS), activate(YS)))
prefix(L) → cons(nil, n__zWadr(L, prefix(L)))
app(X1, X2) → n__app(X1, X2)
from(X) → n__from(X)
niln__nil
zWadr(X1, X2) → n__zWadr(X1, X2)
activate(n__app(X1, X2)) → app(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__zWadr(X1, X2)) → zWadr(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__zWadr(X1, X2)) → ZWADR(X1, X2)
PREFIX(L) → NIL
APP(cons(X, XS), YS) → ACTIVATE(XS)
ACTIVATE(n__app(X1, X2)) → APP(X1, X2)
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ACTIVATE(n__nil) → NIL
ACTIVATE(n__from(X)) → FROM(X)
PREFIX(L) → PREFIX(L)
ZWADR(cons(X, XS), cons(Y, YS)) → APP(Y, cons(X, n__nil))
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)

The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, n__app(activate(XS), YS))
from(X) → cons(X, n__from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, n__nil)), n__zWadr(activate(XS), activate(YS)))
prefix(L) → cons(nil, n__zWadr(L, prefix(L)))
app(X1, X2) → n__app(X1, X2)
from(X) → n__from(X)
niln__nil
zWadr(X1, X2) → n__zWadr(X1, X2)
activate(n__app(X1, X2)) → app(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__zWadr(X1, X2)) → zWadr(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 2 SCCs with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PREFIX(L) → PREFIX(L)

The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, n__app(activate(XS), YS))
from(X) → cons(X, n__from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, n__nil)), n__zWadr(activate(XS), activate(YS)))
prefix(L) → cons(nil, n__zWadr(L, prefix(L)))
app(X1, X2) → n__app(X1, X2)
from(X) → n__from(X)
niln__nil
zWadr(X1, X2) → n__zWadr(X1, X2)
activate(n__app(X1, X2)) → app(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__zWadr(X1, X2)) → zWadr(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__zWadr(X1, X2)) → ZWADR(X1, X2)
APP(cons(X, XS), YS) → ACTIVATE(XS)
ACTIVATE(n__app(X1, X2)) → APP(X1, X2)
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ZWADR(cons(X, XS), cons(Y, YS)) → APP(Y, cons(X, n__nil))
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)

The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, n__app(activate(XS), YS))
from(X) → cons(X, n__from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, n__nil)), n__zWadr(activate(XS), activate(YS)))
prefix(L) → cons(nil, n__zWadr(L, prefix(L)))
app(X1, X2) → n__app(X1, X2)
from(X) → n__from(X)
niln__nil
zWadr(X1, X2) → n__zWadr(X1, X2)
activate(n__app(X1, X2)) → app(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__zWadr(X1, X2)) → zWadr(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__app(X1, X2)) → APP(X1, X2)
The remaining pairs can at least be oriented weakly.

ACTIVATE(n__zWadr(X1, X2)) → ZWADR(X1, X2)
APP(cons(X, XS), YS) → ACTIVATE(XS)
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ZWADR(cons(X, XS), cons(Y, YS)) → APP(Y, cons(X, n__nil))
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
Used ordering: Polynomial interpretation [25,35]:

POL(APP(x1, x2)) = (1/2)x_1   
POL(cons(x1, x2)) = x_1 + x_2   
POL(ZWADR(x1, x2)) = x_1 + x_2   
POL(n__app(x1, x2)) = 1 + (2)x_1   
POL(n__nil) = 15/4   
POL(n__zWadr(x1, x2)) = (2)x_1 + (2)x_2   
POL(ACTIVATE(x1)) = (1/2)x_1   
The value of delta used in the strict ordering is 1/2.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__zWadr(X1, X2)) → ZWADR(X1, X2)
APP(cons(X, XS), YS) → ACTIVATE(XS)
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ZWADR(cons(X, XS), cons(Y, YS)) → APP(Y, cons(X, n__nil))
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)

The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, n__app(activate(XS), YS))
from(X) → cons(X, n__from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, n__nil)), n__zWadr(activate(XS), activate(YS)))
prefix(L) → cons(nil, n__zWadr(L, prefix(L)))
app(X1, X2) → n__app(X1, X2)
from(X) → n__from(X)
niln__nil
zWadr(X1, X2) → n__zWadr(X1, X2)
activate(n__app(X1, X2)) → app(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__zWadr(X1, X2)) → zWadr(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [15].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__zWadr(X1, X2)) → ZWADR(X1, X2)
The remaining pairs can at least be oriented weakly.

APP(cons(X, XS), YS) → ACTIVATE(XS)
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ZWADR(cons(X, XS), cons(Y, YS)) → APP(Y, cons(X, n__nil))
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)
Used ordering: Polynomial interpretation [25,35]:

POL(APP(x1, x2)) = x_1   
POL(cons(x1, x2)) = (4)x_1 + (4)x_2   
POL(ZWADR(x1, x2)) = (1/4)x_1 + (1/4)x_2   
POL(n__nil) = 7/2   
POL(n__zWadr(x1, x2)) = 4 + x_1 + x_2   
POL(ACTIVATE(x1)) = (1/4)x_1   
The value of delta used in the strict ordering is 1.
The following usable rules [17] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

APP(cons(X, XS), YS) → ACTIVATE(XS)
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(XS)
ZWADR(cons(X, XS), cons(Y, YS)) → APP(Y, cons(X, n__nil))
ZWADR(cons(X, XS), cons(Y, YS)) → ACTIVATE(YS)

The TRS R consists of the following rules:

app(nil, YS) → YS
app(cons(X, XS), YS) → cons(X, n__app(activate(XS), YS))
from(X) → cons(X, n__from(s(X)))
zWadr(nil, YS) → nil
zWadr(XS, nil) → nil
zWadr(cons(X, XS), cons(Y, YS)) → cons(app(Y, cons(X, n__nil)), n__zWadr(activate(XS), activate(YS)))
prefix(L) → cons(nil, n__zWadr(L, prefix(L)))
app(X1, X2) → n__app(X1, X2)
from(X) → n__from(X)
niln__nil
zWadr(X1, X2) → n__zWadr(X1, X2)
activate(n__app(X1, X2)) → app(X1, X2)
activate(n__from(X)) → from(X)
activate(n__nil) → nil
activate(n__zWadr(X1, X2)) → zWadr(X1, X2)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 0 SCCs with 4 less nodes.